rakamların evrensel tarihi proje ödevleri / EğitimAL | IB (International Baccalaureate) Programı Nedir?

Rakamların Evrensel Tarihi Proje Ödevleri

rakamların evrensel tarihi proje ödevleri

kaynağı değiştir]

Daha fazla bilgi: Roma abaküsü ve Roma rakamları

Antik Roma arazi araştırmacısı (gromatici) tarafından kullanılan ekipman, Aquincum, modern Budapeşte, Macaristan'da bulundu.

Etnik Yunan matematikçiler, geç Roma Cumhuriyeti ve sonraki Roma İmparatorluğu'nun yönetimi altında devam etseler de, diğerleriyle karşılaştırıldığında dikkate değer yerli Latin matematikçileri yoktu.[89][90] Yunanistan'da matematik okuyan etkili bir Roma devlet adamı olan Cicero (MÖ 106-43) gibi antik Romalılar, Romalı araştırmacıların ve hesap yapıcıların Yunanlar tarafından ödüllendirilen teorik matematik ve geometri yerine uygulamalı matematikle çok daha fazla ilgilendiğine inanıyorlardı.[91] Romalıların sayısal sistemlerini ilk önce doğrudan Yunan emsallerinden mi yoksa merkezi şu anda orta İtalya'da yer alan Toskana'da olan Etrüsk uygarlığınca kullanılan Etrüsk rakamlarından mı türettikleri açık değildir.[92]

Tessera karoları ile yapılmış bir tessera mozaik resminin yakından görünümü. St Peters Bazilikası, Vatikan Eyaleti, Roma, İtalya.

Romalılar hesaplamayı kullanarak hem mali dolandırıcılığı teşvik etme hem de tespit etme ve ayrıca hazine için vergileri yönetme konusunda ustaydılar.[93] Romalı gromatikçilerden (yani arazi araştırmacısı) biri olan Siculus Flaccus, Romalı araştırmacılara tahsis edilmiş toprakların ve bölgelerin yüzey alanlarını ölçmede yardımcı olan Alanların Kategorileri (İngilizce: Categories of Fields) 'ni yazdı.[94] Romalılar, ticaret ve vergileri yönetmenin yanı sıra, köprüler, yol yapımı ve askeri mücadeleler için hazırlık gibi mimarinin kurulması da dahil olmak üzere mühendislikteki problemleri çözmek için düzenli olarak matematik uyguladılar.[95] Önceki Yunan tasarımlarından esinlenen Roma mozaikleri gibi sanat ve zanaat, illüzyonist geometrik desenler ve her biri ortalama sekiz milimetre karelik opus tessellatum parçaları ve ortalama dört milimetre kare yüzeye sahip daha ince opus vermiculatum parçalarından oluşan tessera karosu için hassas ölçümler gerektiren zengin ve ayrıntılı sahneler yarattılar.[96][97]

Roma takviminin oluşturulması da temel matematiği gerektiriyordu. İlk takvimin, Roma Krallığı döneminde MÖ 8. yüzyıla dayandığı ve her iki yılda bir 356 gün artı bir artık yılı içerdiği iddia ediliyor.[98] Buna karşılık, Cumhuriyet döneminin ay takvimi, güneş yılına göre kabaca on dört gün daha kısa olan 355 gün içeriyordu ve bu tutarsızlık 23 Şubat'tan sonra takvime fazladan bir ay eklenmesiyle çözüldü.[99] Bu takvimin yerini Jülyus Caesar (MÖ 100-44) tarafından düzenlenen ve İskenderiyeli Sosigenes tarafından 365 günlük bir döngüye dört yılda bir artık günü dahil edecek şekilde tasarlanan bir güneş takvimi olan Jülyen takvimi almıştır.[100] 11 dakika 14 saniyelik bir hata içeren bu takvim daha sonra, modern zamanlarda uluslararası standart takvimle neredeyse aynı güneş takvimi olan Papa XIII (1572-1585) tarafından düzenlenen Gregoryen takvimi ile düzeltildi.[101]

Aşağı yukarı aynı zamanlarda, Han Çinlileri ve Romalılar, gidilen mesafeleri ölçmek için tekerlekli kilometre sayacı cihazını icat ettiler. Roma modeli ilk kez Romalı inşaat mühendisi ve mimar Vitruvius tarafından tanımlandı (MÖ 80 - 15).[102] Cihaz en azından İmparator Commodus (MS 177 - 192) dönemine kadar kullanıldı, ancak tasarımı 15. yüzyılda Batı Avrupa'da deneyler yapılana kadar kaybolmuş görünüyor.[103] Belki de Antikythera mekanizmasında bulunan benzer teçhizat ve teknolojiye dayanarak, Vitruvius'un kilometre sayacı, bir Roma milinde (kabaca 4590 ft / 1400 m) dört yüz kez dönen, çapı 4 feet (1,2 m) olan araba tekerleklerine sahipti. Her devirde, bir pim ve aks, çakılları bir kutuya düşürmekten sorumlu ikinci bir dişliyi çeviren 400 dişli bir çarkı devreye aldı, her bir çakıl taşı bir mil katetmeyi temsil ediyordu.[104]

Çin[değiştir

Matematik tarihi

Matematik bilminin tarihsel gelişimi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

Günümüzdeki en eski matematiksel metinler Mezopotamya ve Mısır'dandır; Plimpton 322 (Babil, y. MÖ 1900)[2], Rhind Papirüsü (Mısır, y. MÖ 2000–1800)[3] ve Moskova (Golenischev) Papirüsü (Mısır, y. MÖ. 1890). Tüm bu metinler, Pisagor üçlülerinden bahseder. Bu nedenle, çıkarım yoluyla Pisagor teoremi, temel aritmetik ve geometriden sonra en eski ve yaygın matematiksel gelişme olarak görülmektedir.

Matematiğin bir "belirtici disiplin" olarak incelenmesi, MÖ 6. yüzyılda "matematik" terimini "eğitim konusu" anlamına gelen eski Yunanca μάθημα'dan (mathema) türeten Pisagorcularla başlar.[4] Yunan matematiği, yöntemlerini büyük ölçüde geliştirdi (özellikle tümdengelimliakıl yürütme ve kanıtlarda matematiksel kesinlik yoluyla) ve matematiğin konusunu genişletti.[5] Teorik matematiğe neredeyse hiç katkı sağlamamış olsalar da, eski Romalılar uygulamalı matematiği ölçme, yapı mühendisliği, makine mühendisliği, defter tutma, ay ve güneş takvimlerinin oluşturulması ve hatta güzel sanatlar ve el sanatlarında kullandılar. Çin matematiği, basamak değeri sistemi ve negatif sayıların ilk kullanımı da dahil olmak üzere matematiğe erken dönemde katkı vermiştir.[6][7]Hint-Arap rakam sistemi ve bugün dünya genelinde kullanılan işlemlerinin kullanımına ilişkin kurallar, Hindistan'da MS birinci bin yıl boyunca gelişti ve Muhammed ibn Mūsā el-Harezmi'nin çalışmasıyla İslam matematiği yoluyla Batı dünyasına aktarıldı.[8][9] İslam matematiği de bu medeniyetler tarafından bilinen matematiği geliştirdi ve genişletti.[10] Bu kültürel mirasla eşzamanlı fakat onlardan bağımsız olan, Meksika ve Orta Amerika'daki Maya uygarlığı tarafından geliştirilen, Maya rakamlarında sıfır kavramına standart bir sembol verilen matematikti.

Matematikle ilgili birçok Yunanca ve Arapça metin, 12. yüzyıldan itibaren Ortaçağ Avrupa'sında matematiğin daha da gelişmesine yol açacak şekilde Latince'ye çevrildi. Antik çağlardan Orta Çağ'a kadar, matematiksel keşif dönemlerini genellikle yüzyıllar süren durgunluk takip etti. 15. yüzyılda Rönesans İtalyasından başlayarak, yeni bilimsel keşiflerle etkileşime giren yeni matematiksel gelişmeler, günümüze kadar artan bir hızla devam etti. Bu, hem Isaac Newton hem de Gottfried Wilhelm Leibniz'in 17. yüzyıl boyunca sonsuz küçükler hesabının gelişiminde çığır açan çalışmasını içerir. 19. yüzyılın sonunda Uluslararası Matematikçiler Kongresi kuruldu.[11] Kongre, dört yılda bir dünyanın farklı ülkelerinden matematikçileri bir araya getirerek bu alandaki gelişmelere destek vermeye devam ediyor. Her kongrede matematiğe değerli katkılar sunan matematikçilere, Fields Madalyası, Nevanlinna Ödülü, Gauss Ödülü ve Chern Madalyası verilir.[11]

Tarih öncesi[değiştir kaynağı değiştir]

Ana madde: Çin matematiği

Daha fazla bilgi: Sayılar ve Hesaplama Kitabı (Book on Numbers and Computation)

Dünyanın en eski ondalık çarpım tablosunu içeren, Savaşan Devletler Çağında, MÖ 305 tarihli Tsinghua Bambu Fişleri

Erken Çin matematiğinin analizi sonucu dünyanın diğer bölgelerine kıyasla eşsiz bir gelişim gösterdiği anlaşıldığından bilim adamları Çin matematiğinin tamamen bağımsız bir gelişimi olduğunu varsaymaya yöneltti.[105] Çin'den günümüze ulaşan en eski matematiksel metin, MÖ 1200 ile MÖ 100 arasına tarihlenen Zhoubi Suanjing'dir, ancak Savaşan Devletler Çağı'nda y. MÖ 300 tarihi makul görünmektedir.[106] Bilinen en eski ondalık çarpım tablosunu içeren Tsinghua Bambu Fişleri (her ne kadar eski Babilliler 60'lık bir tabana sahip olsa da) ise MÖ 305 civarına tarihlenmektedir ve belki de Çin'in hayatta kalan en eski matematiksel metnidir.[45]

Çin matematiğinde 1 ile 10 arasındaki sayılar için farklı anahtarların kullanıldığı "çubuk rakamları" ve on'un kuvvetleri için ek anahtarların kullanıldığı ondalık konumsal notasyon sisteminin Çin matematiğinde kullanılması özellikle dikkat çekicidir.[107] Böylece, 123 sayısı "1" simgesi, ardından "100" simgesi, ardından "2" simgesi ve ardından "10" simgesi ve ardından "3" simgesi kullanılarak yazılacaktır. Bu, o zamanlar dünyadaki en gelişmiş sayı sistemiydi, görünüşe göre ortak çağdan birkaç yüzyıl önce ve Hint rakam sisteminin geliştirilmesinden çok önce kullanılıyordu.[108] Çubuk rakamları, sayıların istenildiği kadar büyük gösterilmesine ve hesaplamaların "suan pan" veya Çin abaküsünde yapılmasına izin verdi. Suan pan'ın icat tarihi kesin olmamakla birlikte, Xu Yue'nin Şekillerin Sanatı Üzerine Ek Notlar (İngilizce: Supplementary Notes on the Art of Figures) 'ında hakkındaki ilk yazılı sözler MS 190'dan kalmadır.

Çin'de geometri üzerine var olan en eski çalışma felsefi Mohist kanondan, y. MÖ 330'den gelmekte olup Mozi'nin (MÖ 470–390) takipçileri tarafından derlenmiştir. Mo Jing, fizik bilimi ile ilgili birçok alanın çeşitli yönlerini tanımladı ve az sayıda geometrik teorem de buldu.[109] Aynı zamanda çevre, çap, yarıçap ve hacim kavramlarını da tanımladı.[110]

Matematik Sanatına İlişkin Dokuz Bölüm (İngilizce: The Nine Chapters on the Mathematical Art), Çin'den günümüze ulaşan en eski matematik metinlerinden biri (MS 2. yüzyıl).

MÖ 212'de, İmparator Qin Shi Huang, Qin İmparatorluğu'nda resmi olarak onaylanmış olanlar dışındaki tüm kitapların yakılmasını emretti. Bu kararnameye evrensel olarak uyulmadı, ancak bu düzenin bir sonucu olarak, bu tarihten önce eski Çin matematiği hakkında çok az şey biliniyor. MÖ 212 yılındaki kitapların yakılmasından sonra Han hanedanı (MÖ 202 - MS 220) muhtemelen şu anda kaybolan eserler üzerine genişletilmiş matematik eserleri üretti. Bunlardan en önemlisi, tam adı MS 179'da ortaya çıkan, ancak daha önce başka başlıklar altında kısmen var olan Matematik Sanatına İlişkin Dokuz Bölüm (İngilizce: The Nine Chapters on the Mathematical Art) 'dür. Tarım, iş, Çin pagoda kuleleri için yükseklik aralıklarını ve boyut oranlarını belirlemek için geometri kullanımı, mühendislik, ölçme ve dik üçgenler üzerine maddeler içeren 246 kelime probleminden oluşur.[106] Pisagor teoremi için matematiksel bir kanıt[111] ve Gauss yok etme yöntemi için matematiksel bir formül yarattı.[112] Bilimsel çalışma ayrıca, Liu Xin (ö. MS 23) 3,1457 değerini sağlayana kadar ve ardından Zhang Heng (MS 78-139) π'yi 3,1724[113] olarak yaklaşık olarak verene kadar Çinli matematikçilerin başlangıçta 3 olarak yaklaştıkları π değerlerini[106] ve 10'un karekökünü alarak 3,162 değerini[114][115] sağlar. Liu Hui, MS 3. yüzyılda Dokuz Bölüm hakkında yorum yaptı ve 5 ondalık basamağa kadar doğru π değerini verdi (yani 3,14159).[116][117] Teorik anlayıştan çok bir hesaplama dayanıklılığı meselesi olsa da, MS 5. yüzyılda Zu Chongzhi, π'nin yedi ondalık basamağının değerini (yani, 3,141592) hesapladı ve bu, neredeyse sonraki 1000 yıl boyunca en doğru π değeri olarak kaldı.[116][118] Ayrıca bir kürenin hacmini bulmak için, daha sonra Cavalieri prensibi olarak anılacak bir yöntem geliştirdi.[119]

Çin matematiğinin doruk noktası, 13. yüzyılda Song hanedanlığının ikinci yarısında (MS 960-1279) Çin cebirinin gelişmesiyle ortaya çıktı. Bu dönemin en önemli metni Zhu Shijie'nin (1249-1314) Dört Elementin Değerli Aynası (İngilizce: Precious Mirror of the Four Elements) 'dır ve Horner yöntemine benzer bir yöntem kullanarak eşzamanlı yüksek dereceden cebirsel denklemlerin çözümünü ele alır.[116]Değerli Ayna, aynı zamanda, her ikisi de 1100 gibi erken bir tarihte Çin eserlerinde görünse de, sekizinci kuvvet yoluyla iki terimli genişleme katsayılarıyla birlikte Pascal üçgeninin bir diyagramını da içerir.[121] Çinliler ayrıca eski zamanlarda tanımlanan ve Yang Hui (MS 1238-1298) tarafından mükemmelleştirilen sihirli kare ve sihirli daireler olarak bilinen karmaşık kombinatoryal diyagramdan da yararlandı.[121]

Avrupa matematiği Rönesans sırasında gelişmeye başladıktan sonra bile, Avrupa ve Çin matematiği ayrı geleneklerdi ve 13. yüzyıldan itibaren önemli Çin matematiksel çıktıları geriledi. Matteo Ricci gibi Cizvit misyonerler, 16. yüzyıldan 18. yüzyıla kadar matematiksel fikirleri iki kültür arasında ileri geri taşıdılar, ancak bu noktada Çin'den yayılmaktan çok daha fazla matematiksel fikir Çin'e giriyordu.[121]

Japon matematiği, Kore matematiği ve Vietnam matematiği geleneksel olarak Çin matematiğinden kaynaklanmaktadır ve Konfüçyüsçü temelli Doğu Asya kültür alanına ait olarak görülmektedir.[122] Kore ve Japon matematiği, Çin'in Song hanedanlığı döneminde üretilen cebirsel çalışmalardan büyük ölçüde etkilenirken, Vietnam matematiği, Çin'in Ming hanedanlığının (1368-1644) popüler eserlerine büyük ölçüde borçludur.[123] Örneğin, Vietnam matematiksel incelemeleri ya Çince ya da yerli Vietnamca Chữ Nôm alfabesiyle yazılmış olsa da, bunların tümü, bunları çözmek için algoritmalar içeren bir problemler koleksiyonunu sunan Çin formatını ve ardından sayısal cevapları izledi.[124] Vietnam ve Kore'de matematik çoğunlukla matematikçiler ve astronomların profesyonel mahkeme bürokrasisiyle ilişkilendirilirken, Japonya'da özel okullar alanında daha yaygındı.[125]

Hint[değiştir

nest...

oksabron ne için kullanılır patates yardımı başvurusu adana yüzme ihtisas spor kulübü izmit doğantepe satılık arsa bir örümceğin kaç bacağı vardır

© 2024 Toko Cleax. Seluruh hak cipta.